配方法解一元二次方程公式(配方法法解一元二次方程的适用方程?)
时间:2023-12-28 15:36:26 | 分类: 基金百科 | 作者:admin| 点击: 59次
配方法法解一元二次方程的适用方程?
1)公式法,对于一元二次方程ax²+bx+c=0,△=b²-4ac≥0,
方程的根,x=-b/2a±(1/2a)√(b²-4ac),各种情况均适合,特别是在找不到简易解法时,就必须用公式法求解.
(2)因式分解法,一元二次方程易于进行因式分解,表达为(ax-b)(cx-d)=0时,由(ax-b)=0得x1=b/a,由(cx-d)=0得x2=d/c,如,
2x²+9x-5=0,进行因式分解得,(2x-1)(x+5)=0,解得x1=1/2,x2=-5.
(3)配方法,二次项系数为平方数时,一元二次方程易于进行配方表达为(ax-b)²=c+b²的形式时,方程的根是:x= b/ a±√(c+b²),如,
4x ²+6x-5=0,进行配方得,(2x+3/2)²=5+9/4=29/4,
∴2x+3/2=±(1/2)√29,x=-3/4±(1/4)√29,这与用公式法解得的结果是相同的.
二元一次方程的解法公式法配方法(二元一次方程的解法公式)_互联百科
关于二元一次方程的解法公式法配方法,二元一次方程的解法公式这个很多人还不知道,今天菲菲来为大家解答以上的问题,现在让我们一起来看看吧!
1、一)代入消元法(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法.(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边).例题:{x-y=3①{3x-8y=4②由①得x=y+3③③代入②得3(y+3)-8y=4y=1把y=1带入③得x=4则:这个二元一次方程组的解二)加减消元法(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
2、如:把第一个方程称为①,第二个方程称为②①×2得到③10x+6y=18③-②得:10x+6y-(10x+5y)=18-12三)换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
3、换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
5、通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
6、或者变为熟悉的形式,把复杂的计算和推证简化。
7、它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
8、比如(x+y)/2-(x-y)/3=6①3(x+y)=4(x-y)②解:设x+y为a,x-y为b则,原方程式变为a/2-b/3=6③3a-4b=0④解得:a=24b=18由此:x+y=24x-y=18方程组的解为:x=21y=3。
标签:
一元二次方程的解法(通用10篇)
1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;
2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;
3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;
5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
重点:一元二次方程的四种解法。
难点:选择恰当的方法解一元二次方程。
教学建议:
一、教材分析:
1.知识结构:
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。
(2)熟记求根公式()和公式中字母的意义在使用求根公式时要注意以下三点:
1)把方程化为一般形式,并做到、、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。
2)把一元二次方程的各项系数、、代入公式时,注意它们的符号。
(3)抓住方程特点,选用因式分解法解一元二次方程
如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。
我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。
1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.
1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;
2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;
3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;
5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
重点:一元二次方程的四种解法。
难点:选择恰当的方法解一元二次方程。
教学建议:
一、教材分析:
1.知识结构:
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。
(2)熟记求根公式()和公式中字母的意义在使用求根公式时要注意以下三点:
1)把方程化为一般形式,并做到、、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。
2)把一元二次方程的各项系数、、代入公式时,注意它们的符号。
(3)抓住方程特点,选用因式分解法解一元二次方程
如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。
我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。
1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.
1.使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0,b≠0,c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;
2.在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;
3.在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。
重点:掌握用配方法解一元二次方程。
难点:凑配成完全平方的方法与技巧。
1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)
(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))
3.对于前两种不完全的一元二次方程ax2=0(a≠0)和ax2+c=0(a≠0),我们已经学会了它们的解法。
例解方程:(x-3)2=4(让学生说出过程)。
解:方程两边开方,得x-3=±2,移项,得x=3±2。
所以x1=5,x2=1.(并代回原方程检验,是不是根)
4.其实(x-3)2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)
1.逆向思维
我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m)2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m)2。
问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。(添一项+1)
练习,填空:
总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即.+()④
(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次
项,括号内第二项的平方,恰是配方时所添的常数项)
问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?
1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;
2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;
3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;
5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
重点:一元二次方程的四种解法。
难点:选择恰当的方法解一元二次方程。
教学建议:
一、教材分析:
1.知识结构:
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。
(2)熟记求根公式()和公式中字母的意义在使用求根公式时要注意以下三点:
1)把方程化为一般形式,并做到、、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。
2)把一元二次方程的各项系数、、代入公式时,注意它们的符号。
(3)抓住方程特点,选用因式分解法解一元二次方程
如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。
我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。
1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.
1.使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0,b≠0,c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;
2.在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;
3.在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。
重点:掌握用配方法解一元二次方程。
难点:凑配成完全平方的方法与技巧。
1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)
(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))
3.对于前两种不完全的一元二次方程ax2=0(a≠0)和ax2+c=0(a≠0),我们已经学会了它们的解法。
例解方程:(x-3)2=4(让学生说出过程)。
解:方程两边开方,得x-3=±2,移项,得x=3±2。
所以x1=5,x2=1.(并代回原方程检验,是不是根)
4.其实(x-3)2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)
1.逆向思维
我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m)2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m)2。
问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。(添一项+1)
练习,填空:
总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即.+()④
(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次
项,括号内第二项的平方,恰是配方时所添的常数项)
问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?
1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;
2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;
3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;
5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
重点:一元二次方程的四种解法。
难点:选择恰当的方法解一元二次方程。
教学建议:
一、教材分析:
1.知识结构:
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。
(2)熟记求根公式()和公式中字母的意义在使用求根公式时要注意以下三点:
1)把方程化为一般形式,并做到、、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。
2)把一元二次方程的各项系数、、代入公式时,注意它们的符号。
(3)抓住方程特点,选用因式分解法解一元二次方程
如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。
我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。
1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.
1.使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0,b≠0,c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;
2.在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;
3.在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。
重点:掌握用配方法解一元二次方程。
难点:凑配成完全平方的方法与技巧。
1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)
(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))
3.对于前两种不完全的一元二次方程ax2=0(a≠0)和ax2+c=0(a≠0),我们已经学会了它们的解法。
例解方程:(x-3)2=4(让学生说出过程)。
解:方程两边开方,得x-3=±2,移项,得x=3±2。
所以x1=5,x2=1.(并代回原方程检验,是不是根)
4.其实(x-3)2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)
1.逆向思维
我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m)2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m)2。
问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。(添一项+1)
练习,填空:
总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即.+()④
(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次
项,括号内第二项的平方,恰是配方时所添的常数项)
问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?
1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;
2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;
3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;
5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
重点:一元二次方程的四种解法。
难点:选择恰当的方法解一元二次方程。
教学建议:
一、教材分析:
1.知识结构:
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。
(2)熟记求根公式()和公式中字母的意义在使用求根公式时要注意以下三点:
1)把方程化为一般形式,并做到、、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。
2)把一元二次方程的各项系数、、代入公式时,注意它们的符号。
(3)抓住方程特点,选用因式分解法解一元二次方程
如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。
我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。
1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.
1.使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0,b≠0,c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;
2.在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;
3.在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。
重点:掌握用配方法解一元二次方程。
难点:凑配成完全平方的方法与技巧。
1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)
(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))
3.对于前两种不完全的一元二次方程ax2=0(a≠0)和ax2+c=0(a≠0),我们已经学会了它们的解法。
例解方程:(x-3)2=4(让学生说出过程)。
解:方程两边开方,得x-3=±2,移项,得x=3±2。
所以x1=5,x2=1.(并代回原方程检验,是不是根)
4.其实(x-3)2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)
1.逆向思维
我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m)2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m)2。
问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。(添一项+1)
练习,填空:
总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即.+()④
(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次
项,括号内第二项的平方,恰是配方时所添的常数项)
问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?
通过本节课的学习,学生已掌握了一元二次方程的解法之一——直接开平方法,并能熟练地求出能应用直接开平方法解的一元二次方程的两个根,同时掌握了一元二次方程的解题步骤及书写格式。
1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。
一、
我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ²+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。
小亮是这样做的:
一般的,对于一元二次方程aχ²+bχ+c=0(a≠0),当b²-4ac≥0时,它的根是:
上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。
公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。
公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。
例解方程:χ²-7χ-18=0
解:这里a=1,b=-7,c=-18
随堂练习:
1、用公式法解下列方程:
2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。
作业:习题2.61、2
要求学生先找出a,b,c,对b²-4ac进行验证,然后代入公式,熟练后可简化步骤
1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。
一、
我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ²+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。
小亮是这样做的:
一般的,对于一元二次方程aχ²+bχ+c=0(a≠0),当b²-4ac≥0时,它的根是:
上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。
公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。
公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。
例解方程:χ²-7χ-18=0
解:这里a=1,b=-7,c=-18
随堂练习:
1、用公式法解下列方程:
2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。
作业:习题2.61、2
要求学生先找出a,b,c,对b²-4ac进行验证,然后代入公式,熟练后可简化步骤
1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。
一、
我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ²+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。
小亮是这样做的:
一般的,对于一元二次方程aχ²+bχ+c=0(a≠0),当b²-4ac≥0时,它的根是:
上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。
公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。
公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。
例解方程:χ²-7χ-18=0
解:这里a=1,b=-7,c=-18
随堂练习:
1、用公式法解下列方程:
2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。
作业:习题2.61、2
要求学生先找出a,b,c,对b²-4ac进行验证,然后代入公式,熟练后可简化步骤
[课题]§12.2一元二次方程的解法(2)——配方法[教学目的]使学生掌握配方法的推导过程,能够熟练地进行配方;使学生会用配方法解数字系数的一元二次方程。[教学重点]掌握配方法的推导过程,能够熟练地进行配方。[教学难点]掌握配方法的推导过程,能够熟练地进行一元二次方程一般形式ax2+bx+c=0(a≠0)的配方。[教学关键]会用配方法解数字系数的一元二次方程。[教学用具][教学形式]讲练结合法。[教学用时]45′×1[教学过程][复习提问]1、在(x+3)2=2中,x+3与2的关系是什么?(x+3是2的平方根。)2、试将方程的左边展开、移项、合并同类项。(x2+6x+9=2,x2+6x+7=0。)[讲解新课]现在,我们来研究方程:x2+6x+7=0的解法。我们知道,方程:x2+6x+7=0是由方程:(x+3)2=2变形得到的,因此,要解方程:x2+6x+7=0应当如何变形?这里要求学生做尝试回答:要解方程:x2+6x+7=0,最好将其变形为:(x+3)2=2。这是因为,我们会用直接开平方法解方程:(x+3)2=2了。下面重点研究如何将方程:x2+6x+7=0,变形为:(x+3)2=2。这里,不是只研究这一道题解法的问题,而是注意启发学生找出一般性规律。将方程:x2+6x+7=0的常数项移到右边,并将一次项6x改写成2·x·3,得:x2+2·x·3=-7。由此可以看出,为使左边成为完全平方式,只需在方程两边都加上32,即:x2+2·x·3+32=-7+32,(x+3)2=2。解这个方程,得:x1=-3+,x2=-3-。随后提出:这种解一元二次方程的方法叫做配方法。很明显,掌握这种方法的关键是“配方”。上述引例以及列3,二次项系数都是1,而例4,二次项的系数不是1,这时,要将方程的两边都除以二次项的系数,就把该方程的二次项系数变成1了。这样,“配方”就容易了。让学生做练习:1、x2+6x+=(x+)2;(9,3)2、x2-5x+=(x-)2;(,)3、x2+x+=(x+)2;(,)例3解方程:x2-4x-3=0。解:略。例4解方程:2x2+3=7x。解:略。说明:在讲解完这两个例题之后,一方面是利用“配方法”求出一元二次方程的解,另一方面是通过求解过程使学生掌握“配方”的方法。讲解应突出重点,对容易出错的地主应给予较多的讲解。如例4的解方程:2x2+3=7x,在“分析”中指出,应先把这个方程化成一般形式:2x2-7x+3=0。其次,这个方程的二次项系数是2,为了便于配方,可把二次项系数化为1,为此,把方程的各项都除以2,并移项,得:x2-x=-;下一步应是配方。这里,一次项的系数是(-),它的一半的平方是(-)2。学生在这里容易出错。讲解时,应提醒学生注意。我们知道,配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法,而用公式法。但是,配方法是导出公式法——求根公式的关键,在以后的学习中,会常常用到配方法,所以掌握这个数学方法是重要的。[课堂练习]教科书第10页练习第1,2题。[课堂小结]这堂课我们主要学习了用配方法解数字系数的一元二次方程,配方的关键是:在方程的两边都加上一次项系数一半的平方。请同学们回去后,用配方法解一下关于x的方程:ax2+bx+c=0(a≠0)。(此题为下一课讲解作准备,可指定一些同学做,从中了解在公式推导过程中存在的问题。)[课外作业]教科书第15页习题12.1A组第3,4题。[板书设计]
课题:例题:辅助板书:[课后记]通过本节课的学习,多数学生对配方法解一元二次方程基本掌握,但有一部分学生对一元二次方程一般式的配方法掌握的不好,希望课后多加练习。
1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。
一、
我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ²+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。
小亮是这样做的:
一般的,对于一元二次方程aχ²+bχ+c=0(a≠0),当b²-4ac≥0时,它的根是:
上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。
公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。
公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。
例解方程:χ²-7χ-18=0
解:这里a=1,b=-7,c=-18
随堂练习:
1、用公式法解下列方程:
2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。
作业:习题2.61、2
要求学生先找出a,b,c,对b²-4ac进行验证,然后代入公式,熟练后可简化步骤
[课题]§12.2一元二次方程的解法(1)——直接开平方法[教学目的]使学生掌握直接开平方法,并会解某些一元二次方程;使学生会解(x-a)2=b(b≥0)型的方程,为进一步学习公式法作好准备。...
课题名称13、3公式法课型新授课课时安排1/1教学目标1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。...
课题名称§13、3公式法课型新授课课时安排1/1教学目标1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。...
课题名称§13、3公式法课型新授课课时安排1/1教学目标1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。...
1.知识结构:2.重点、难点分析(1)本节的重点是会用判别式判定根的情况.一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它...
一、教学目标1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.2.通过本节课的教学,向学生渗透“转化”的数学思想方法;3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.二、重...
第一课时一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。...
教学目标1.了解整式方程和的概念;2.知道的一般形式,会把化成一般形式。3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。...
22.1一元二次方程第一课时教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模...
【学习目标】:1、会分析实际问题中的等量关系,并能够用一元二次方程解决实际问题2、经历用方程解决实际问题的过程,知道解应用题的一般步骤和关键所在3、通过对实际问题的分析,进一步理解方程是刻画客观世界的有效模式,培养在生活中发...
【学习目标】:1、会分析实际问题中的等量关系,并能够用一元二次方程解决实际问题2、经历用方程解决实际问题的过程,知道解应用题的一般步骤和关键所在3、通过对实际问题的分析,进一步理解方程是刻画客观世界的有效模式,培养在生活中发...
教学目标1.理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.培养观察、比较、分析、综合等能力,会应用...
课程教材研究所田载今一、教科书内容和课程学习目标(一)教科书内容本章的主要内容包括:一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法)以及运用一元二次方程分析和解决实际问题.全章共包括三节:22.1一...
教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。...
教学内容用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.教学目标掌握b2-4ac0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac0,ax2+...
一元二次方程的解法(配方法)知识讲解(提高)_应用
原标题:一元二次方程的解法(配方法)知识讲解(提高)
要点一、一元二次方程的解法---配方法
1.配方法解一元二次方程:
(1)配方法解一元二次方程:
的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
(3)用配方法解一元二次方程的一般步骤:
②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
④再把方程左边配成一个完全平方式,右边化为一个常数;
⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.
要点诠释:
(1)配方法解一元二次方程的口诀:一除二移三配四开方;
(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.
1.用于比较大小:
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.
2.用于求待定字母的值:
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.
3.用于求最值:
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.
4.用于证明:
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
要点诠释:
“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.
【总结升华】方程(1)的二次项系数是1,方程(2)的二次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解.同时要注意一次项的符号决定了左边的完全平方式中是两数和的平方还是两数差的平方.
【总结升华】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明.本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致.
责任编辑:
什么是配方法解一元二次方程
配方法:将一元二次方程配成(x+m)^2=n的形式,再利用直接开平方法求解的方法。一、用配方法解一元二次方程的步骤:1、把原方程化为一般形式;2、方程两边同除以二次项系,使二次项系为1,并把常项移到方程右边;3、方程两边同时加上一次项系一半的平方;4、把左边配成一个完全平方式,右边化为一个常;5、进一步通过直接开平方法求出方程的解,如果右边是非负,则方程有两个实根;如果右边是一个负,则方程有一对共轭虚根。二、配方法的理论依据是完全平方公式a^2+b^2+2ab=(a+b)^2。三、配方法的关键是:先将一元二次方程的二次项系化为1,然后在方程两边同时加上一次项系一半的平方。
20道用配方法解一元二次方程的题
1、例题:x²-2x=0变化:x²-2x+1=1变化:(x-1)²=1变化:x-1=±1解为:x=2或x=02、例题:x²-2x=4变化:x²-2x+1=5变化:(x-1)²=5变化:x-1=±√5解为:x=1+√5或x=1-√53、例题:2x²-4x=4变化:x²-2x+1=3变化:(x-1)²=3变化:x-1=±√3解为:x=1+√3或x=1-√34、例题:x²-4x=-4变化:x²-4x+4=0变化:(x-2)²=0变化:x-2=±0解为:x=25、例题:x²-4x=0变化:x²-4x+4=4变化:(x-2)²=4变化:x-2=±2解为:x=4或x=0扩展资料:配方法解一元二次方程技巧:1、要将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。2、配方法的理论依据是完全平方公式a²+b²+2ab=(a+b)²。3、通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。参考资料来源:
一元二次方程的解法配方法
x^2+2x-3=0解:1.移项----x^2+2x=32.配方-----x^2+2x+1=3+13.结合-----(x+1)^2=44.解方程----x+1=±2,x1=1,x2=-3
与二次方程配方法的公式?
①一元二次方程配方法公式为ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数,bx叫作一次项,b是一次项系数,c叫作常数项。只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。
②一元二次方程成立必须同时满足三个条件:
1、是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程,是无理方程。
2、只含有一个未知数。
3、未知数项的最高次数是2。
一元二次方程配方法。公式法
记住用公式法解一元二次方程的步骤:例如3x-7x=-2第一步:先把方程变成axbxc=0这样的一般形式:3x-7x2=0(右边一定要是0)第二步:写出各项的系数:a=3,b=-7,c=2第三步:计算出b-4ac这个特殊式子(叫判别式)的值:b-4ac=(-7)-4乘以3乘以2=25第四步:套书上的求根公式(一元二次方程一般有两个根,一个写成x1,另一个写成x2。-b√(b-4ac)-(-7)√25x1=------------------=------------------=22a2乘以3-b-√(b-4ac)-(-7)-√25x2=------------------=------------------=1/32a2乘以3可以!我在线的,随时等你发来!
一元二次方程,配方方法?
1、转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2、移项: 常数项移到等式右边
3、系数化1: 二次项系数化为1
4、配方: 等号左右两边同时加上一次项系数一半的平方
5、求解: 用直接开平方法求解,整理 (即可得到原方程的根)
【一元二次方程】
只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
【 一元二次方程的四个特点】
(1)含有一个未知数;
(2)且未知数次数最高次数是2;
(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.
(4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a、b、c为常数,a≠0)。