指数公式数学几年级(指数和来自阶乘的数学计算公式)

时间:2024-01-08 20:30:13 | 分类: 基金百科 | 作者:admin| 点击: 59次

指数和来自阶乘的数学计算公式

阶乘的定义n!=n*(n-1)*(n-2)...3*2*1上述定义式子没有其它的计算公式,就如a^n=aa.a,a的n次方等于n个a相乘一样,没有其它计算公式不过,在大学数学专业里,有公式对n!进行估计,比如用指数函数对n!进行近似计算

数学指数的运算

2^a*5^b=2^c*5^d=10=2*5所以a=b=c=d=1则(a-1)(d-1)=(b-1)(c-1)f(x+y)=(a^(x+y)-a^-(x+y)/(a^(x+y)+a^-(x+y)),=(f(x)+f(y))/(1+f(x)f(y))

小学四年级数学公式大全

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

1、小学四年级数学公式大全加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)1每份数x份数=总数总数+每份数=份数总数+份数=每份数21倍数X倍数=几倍数几倍数+1倍数=倍数几倍数+倍数=1倍数3速度X时间=路程路程+速度=时间积+一个因数=另一个因数9被除数+除数=商被除数+商=除数商x除数=被除数小学数学图形计算公式1正方形C周长S面积a边长周长=边长X4C=4a面积=边长x边长S=axa2正方体V:体积a:棱长路程+时间=速度4单价X数量=总价总价+单价=数量总价+数量=单价5工作效率X工作时间=工作总量工作总量+工作效率=工作时间工作总量+工作时间=工作效率6加数+

2、加数=和和个加数=另一个加数7被减数减数=差被减数-差=减数差+减数=被减数8因数X因数=积S=2(ab+ah+bh)(2向积二长x宽x高一V=abh5三角形s面积a底h高面积二底x高+2s二ah+2三角形高=面积X2+底三角形底=面积X2+高6平行四边形s面积a底h高面积二底乂高s=ah表面积二棱长x棱长x6Sxax6体积=棱长x棱长x棱长V=axaxa3长方形C周长S面积a边长周长二(长+宽)X2C=2(a+b)面积=长乂宽S=ab4长方体V:体积s面积a长b:宽h:高表面积(长x宽+长x高+宽x高)X27梯形s面积a上底b下底h高面积=(上底+下底)x高+2s=(a+

3、b)xh+28圆形s面积c周长nd二直径尸半径一(1)周长=直径xn=2XUX半径一C=nd=2nr(2)面积=半径x半径xn9圆柱体v:体积h:高s底面积r:底面半径c:底面周长一(1删面积=底面周长x高(2)表面积二侧面积+底面积x2(3胖积=底面积X高(4)体积=侧面积+2X半径10圆锥体v:体积h:高s;底面积r:底面半径体积=底面积x高+3总数+总份数=平均数和差问题的公式(和+差)+2=大数(和一差)+2=小数和倍问题和+(倍数1)=小数小数x倍数=大数(或者和小数=大数)差倍问题差+(倍数1)=小数小数X倍数=大数(或小数+差=大数)二角形的面积=底*图

4、+2。公式S=aXh+2正方形的面积=边长X边长公式S=axa长方形的面积=长*宽公式S=axb平行四边形的面积=底*高公式S=axh梯形的面积=(上底+下底)X高+2公式S=(a+b)h+2内角和:三角形的内角和=180度。长方体的体积=长*宽x高公式:V=abh长方体(或正方体)的体积=底面积x高公式:V=abh正方体的体积=棱长x棱长x棱长公式:V=aaa圆的周长=直径X兀公式:L=兀d=2%r圆的面积=半径X半径X兀公式:S=兀r2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=7tdh=2%rh圆柱的

5、表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+271r2圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh圆锥的体积=1/3底面X积高。公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变

6、。3、乘法交换律:两数相乘,交换因数的位置,积不变。4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)X5=2X5+4X56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是。的数都得O。简便乘法:被乘数、乘数末尾有。的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式

7、两边同时乘以(或除以)一个相同的数,等式仍然成立。8、什么叫方程式?答:含有未知数的等式叫方程式。9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有X的算式并计算。10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。13、分数乘整数,用

8、分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面1、单价X数量=总价2、单产量X

9、数量=总产量3、速度X时间=路程4、工效X时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数十差因数X因数=积一个因数=积+另一个因数被除数+除数=商除数=被除数+商被除数=商X除数有余数的除法:被除数=商X除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90+5+6=90+(5X6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立

10、方厘米1立方厘米=1000立方毫米1吨=1000千克1千克=1000克=1公斤=1市斤1公顷=10000平方米。1亩=666.666平方米。1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。如:2+5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。10、解比例:求比例中的未知项,叫做解比例。如3:x=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种

11、量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:xxy=k(k一定)或k/x=y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分

12、号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。15、要学会把小数化成分数和把分数化成小数的化发。16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)17、互质数:公约数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其

13、中最小的一个叫做这几个数的最小公倍数。19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约

14、数,这样的数叫做质数(或素数)。24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。28、利息=本金X利率X时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.14141432、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这

15、样的小数叫做不循环小数。如3无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.什么叫代数?代数就是用字母代替数。35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=(a+b)*c初中数学知识点归纳.有理数的加法运算同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算减正等于加负,减负等于加正。有理数的乘法运算符号法则同号得正异号负,一项为零积是零。

16、合并同类项说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。去添括号都变号。分离要靠移完成。移乘变除除变乘。等于两数平方差。完全平方不是它。展开式它共三项。首末二倍中间放。先减后加差平方。二倍首末在中央。先减后加差平方。好。次方程先去分母再括号,同类各项去合并,移项变号要记牢。系数化“1”还没求得未知须检验,回代值等才算了。次方程先去分母再括号,移项合并同类项。括号前面是负号,解方程已知未知闹分离,移加变减减变加,平方差公式两数和乘两数差,积化和差变两项,完全平方公式二数和或差平方,首

17、平方与末平方,和的平方加联结,完全平方公式首平方又末平方,和的平方加再加,系数化1还没好,准确无误不白忙。因式分解与乘法和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添哥符号。因式分解一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。【注】一提(提公

18、因式)二套(套公因式分解一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下*稳又准,连乘结果是基础。二次三项式的因式分解先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例外项积等内项积,列出方程并解之。求比值由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好

19、办法,殊途同归会变通。正比例与反比例商定变量成正比,积定变量成反比。正比例与反比例变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例四式是否成比例,生或降哥先排序。两端积等中间积,四式便可成比例。向。比例中项成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方

20、式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次哥。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次哥。限制条件不唯一,不等式组求解集。解一元一次不等式先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意同乘除正无防碍,同乘除负也变号。解一元一次不等式组大于头来小于尾,大小

21、不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,敬老院以老为荣,军营里没老没少。(同小相对取较小)(同大就要取较大)(大小小大就是它)(小小大大哪有哇)大大小小解集空。解一元二次不等式首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。a正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部

22、。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配

23、方法解一元二次方程已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】恒等式解一元二次方程方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别判断正比例函数,检验当分两步走。一量表示另一量,有没有。若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量,是与否。若有还要看取值,全体实数都要有。正比例函数的图象与性质正比函数图直线,经过和原点。K正一三负二四,变化趋势记心间。

24、K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数一次函数图直线,经过点。K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。反比例函数反比函数双曲线,经过点。K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很显眼。如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。列表描点后连线,平移规律记心

25、间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及大小,开口向上是正数。绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。如果要画抛物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线直线、射线与线段直线射线与线段,形状相似有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。角一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。直平之间是钝角,平周之间叫优角。互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!

八年级数学的教案集锦15篇

在教学工作者实际的教学活动中,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的八年级数学的教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,

1、你有哪些乘车方案?

某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:

载客量(单位:人/辆)4530

租金(单位:元/辆)400280

根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。

设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即

化简为:y=120x+1680

讨论:

根据问题中的条件,自变量x的取值应有几种可能?

为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的取值为____。

在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。

方案一:

方案二:

1.知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.

1.重点:一次函数的应用.

2.难点:一次函数的应用.

3.关键:从数形结合分析思路入手,提升应用思维.

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

一、范例点击,应用所学

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

1、一次函数的应用例:

一.教学目标:

1.了解方差的定义和计算公式。

3.会用方差计算公式来比较两组数据的波动大小。

二.重点、难点和难点的突破方法:

1.重点:方差产生的必要性和应用方差公式解决实际问题。

2.难点:理解方差公式

3.难点的突破方法:

方差公式:S=[(-)+(-)+…+(-)]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三.例习题的意图分析:

1.教材P125的讨论问题的意图:

(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的*限性,使学生体会到学习方差的意义和目的。

2.教材P154例1的设计意图:

(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四.课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五.例题的分析:

教材P154例1在分析过程中应抓住以下几点:

1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六.随堂练习:

1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

七.课后练习:

1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数相同,但SS,所以确定去参加比赛。

3.甲、乙两台机床生产同种零件,10天出的次品分别是()

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽10.810.911.010.711.111.110.811.010.710.9

小兵10.910.910.810.811.010.910.811.110.910.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

答案:1.62.>、乙;3.=1.5、S=0.975、=1.5、S=0.425,乙机床性能好

平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。

学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。

1、知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算.

2、过程与方法:在探索平方差公式的过程中,发展学生的符号感和归纳能力、推理能力.在计算的过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美.

3、情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力.

重点:平方差公式的推导和应用.

难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.

一、教材分析

平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.

本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.

另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.

2.教学目标:

知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.

数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.

解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.

情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.

3.教学重点、难点:

重点:理解并掌握平行四边形的概念及其性质.

难点:运用平移、旋转的图形变换思想探究平行四边形的性质.

4.教材处理:

基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.

首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.

然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.

最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.

总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.

本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.

知识与能力:

1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

2.理解平行四边形的另一种判定方法,并学会简单运用.

过程与方法:

1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.

2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

情感、态度与价值观:

通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

教学难点对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用

教学过程:

第一环节复习引入:

问题1:

活动:

工具:两对长度分别相等的木条。

动手:能否在平面内用这四根笔摆成一个平行四边形?

思考1.1:你能说明你所摆出的四边形是平行四边形吗?

已知:四边形ABCD中,AD=BC,AB=CD.试说明四边形ABCD是平行四边形.

思考1.2:以上活动事实,能用文字语言表达吗?

学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:

(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.

(2)通过观察、实验、猜想到:

在此活动中,教师应重点关注:

(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;

(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;

(3)学生能否通过独立思考、小组合作得出正确的证明思路.

例1如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?

八年级数学上册教案例2如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?

(1)一组对边平行且另一组对边相等的四边形是平行四边形()

(3)一组对边平行且一组对角相等的四边形是平行四边形()

(4)一组对边平行,一组邻角互补的四边形是平行四边形()

2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?

3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.

4.如图:AD是ΔABC的边BC边上的中线.

(1)画图:延长AD到点E,使DE=AD,连接BE,CE;

第四环节小结:

师生共同小结,主要围绕下列几个问题:

(1)判定一个四边形是平行四边形的方法有哪几种?

(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

教学目标:

1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。

3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。

教学重点、难点:

重点:掌握特殊平行四边形性质与判定。

难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。

教学过程:

一、梳理知识:

1.特殊平行四边形的性质.

1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm

2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,

3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,

小结:特殊平行四边形的性质(PPT呈现)

小结:特殊平行四边形的判定(PPT呈现)

二、深化提高:

1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?

变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?

3.如图,在中,是边的中点,分别是及其延长线上的点,.

(1)求证:.

1.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、

2.如图,已知⊿ABC是等腰三角形,顶角∠BAC=,(<60°)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.

(1)求证:BE=CD;

1.如图,在正方形ABCD中,P为对角线BD上一点,

求证:EF=AP

DH⊥AB于H,求:DH的长。

1、等腰三角形的概念、

1、经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点、

通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯、

1、等腰三角形的概念及性质、

师:多媒体课件、投影仪;

生:硬纸、剪刀、

1、提出问题,创设情境

(师)在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:

(生)满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

(师)很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

(师)同学们通过自己的思考来做一个等腰三角形。作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

(生乙)在甲同学的做法中,A点可以取直线L上的任意一点。

(师)对,按这种方法我们可以得到一系列的等腰三角形、现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,剪出一个等腰三角形。

(师)按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

1、等腰三角形是轴对称图形吗?请找出它的对称轴。

3、顶角的平分线所在的直线是等腰三角形的对称轴吗?

4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

(生甲)等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

(师)同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

(生乙)我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。

(生丙)我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。

(生丁)我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。

(生戊)老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。

(师)你们说的是同一条直线吗?大家来动手折叠、观察。

(生)我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

等腰三角形的性质:

1、等腰三角形的两个底角相等(简写成“等边对等角”)

2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、

(师)由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)

(师)很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范、下面我们来看大屏幕。

(例1)如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数、

∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形内角和为180°,就可求出ABC的三个内角。

(师)这位同学分析得很好,对我们以前学过的定理也很熟悉、如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

(师)下面我们通过练习来巩固这节课所学的知识、

(一)课本P141练习1、2、3。

1、如下图,在下列等腰三角形中,分别求出它们的底角的度数、

答案:(1)72°(2)30°

2、如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?

答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

答:∠B=77°,∠C=38、5°、

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、

(一)课本P147─1、3、4、8题、

(二)1、预习课本P141~P143、

2、预习提纲:等腰三角形的判定、

求证:AE=CE、

过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质、

结果:

证明:延长CD交AB的延长线于P,如右图,在ADP和ADC中

同理可证:AE=DE、

教学内容分析:

⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

学生分析:

⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

教学目标:

⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

重点:掌握正方形的性质与判定,并进行简单的推理。

难点:探索正方形的判定,发展学生的推理能

教学方法:类比与探究

教具准备:可以活动的四边形模型。

一、教学分析

1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

3.本课教学内容的特点,重点分析体现新课程理念的特点

本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

1.学生所在地区、学校及班级的特色

我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

班级学生的`年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

教学过程:

一:复习巩固,建立联系。

问题设置:①平行四边形、矩形,菱形各有哪些性质?

②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

二:动手操作,探索发现。

活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

设置问题:①什么是正方形?

【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

评析活动,总结发现:

一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

方法一解:∵四边形ABCD是正方形

方法二:证明△AOB是等腰直角三角形,即可得证。

独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

说明思路,从已知出发或者从已有的判定加以选择。

请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

②理解整式除法的算理,发展有条理的思考及表达能力。

重点:整式除法的运算法则及其运用。

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

(3)你能根据(2)说说单项式除以单项式的运算法则吗?

注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

例2计算:

首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

1、必做题:教科书第164页习题15。3第1题;第2题。

2、选做题:教科书第164页习题15。3第8题

1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。

1、作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。

2、根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

体会极坐标和直角坐标思想,并能解决一些简单的问题

学习过程(导入、探究新知、即时练习、小结、达标检测、作业)

学习过程:

一、旧知回顾:

1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。

3、各象限点的坐标的特征:

二、新知检索:

1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),

例1、

(1)将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?

(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?

例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?

(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?

1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。

(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?

归纳:图形坐标变化规律

1、平移规律:2、图形伸长与压缩:

一、旧知回顾:

1、轴对称图形定义:如果一个图形沿着对折后两部分完全重合,这样的图形叫做轴对称图形。

中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形

二、新知检索:

1、如图,左边的鱼与右边的鱼关于y轴对称。

1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?

3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?

1、右图的鱼是通过什么样的变换得到左图的鱼的。

2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。

3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系

1、将坐标作如下变化时,图形将怎样变化?

2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。

3、如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。

4、描出下图中枫叶图案关于x轴的轴对称图形的简图。

教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.

教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.

教学过程:

一、提出问题,学生自学

问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?

学生讨论,教师归纳,得出结果:

分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.

推广:计算(a+b)2=__________;(ab)2=__________.

结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.

二、几何分析:

图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2=a2+2ab+b2,即说明(a+b)2=a2+2ab+b2.请点击下载Word版完整教案:新人教版八年级数学上册《完全平方公式》教案教案《新人教版八年级数学上册《完全平方公式》教案》,来自网!

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

一、创设问题的情境,激发学生的学习热情,导入课题

出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:

1、观察图1-2,正方形A中有XXXXXXX个小方格,即A的面积为XXXXXX个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C之间有什么关系?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

1、错例辨析:

解:由于三角形的两边为3、4

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

2、练习P7§1.11

课本P7§1.12、3、4

用二元一次方程组解决有趣场景中的数字问题和行程问题,归纳用方程(组)解决实际问题的一般步骤.

1.通过设置问题串,让学生体会分析复杂问题的思考方法.

2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型.

在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气,树立自信心,并鼓励学生合作交流,培养学生的团队精神.

1.初步体会列方程组解决实际问题的步骤.

将实际问题转化成二元一次方程组的数学模型;会用图表分析数量关系。

教学准备:

教具:教材,课件,电脑(视频播放器)

学具:教材,练习本

第一环节:复习提问(5分钟,学生口答)

内容:填空:

(1)一个两位数,个位数字是,十位数字是,则这个两位数用代数式表示为;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为.

(2)一个两位数,个位上的数为,十位上的数为,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为.

(3)有两个两位数和,如果将放在的左边,就得到一个四位数,那么这个四位数用代数式表示为;如果将放在的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为.

第二环节:情境引入(10分钟,学生动脑思考,全班交流)

内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况.你能确定小明在12:00时看到的里程碑上的数吗?

第三环节:合作学习(10分钟,小组讨论,找等量关系,解决问题)

内容:例1

两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.

学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论.

第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)

内容:练习

1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1.这个两位数是多少?

2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左边与放在右边所得的数之和为8484.求这个两位数.

第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)

内容:

1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流.

2.师生互相交流总结出列方程(组)解决实际问题的一般步骤.

第六环节:布置作业

内容:习题7.6

1、能说出约分的意义和步骤。

3、能说出分式的乘、除和乘方法则,并能用式子表示。

1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2、约分的步骤把分式的分子与分母分解因式,然后约去分子与分母的公因式。

3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。

4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的积做积的分母。

5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。

1、正确理解分式约分的意义

(1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的分子与分母的公因式约去。

(2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。

2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:

(1)若分子、分母都是几个因式乘积的形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、

(2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、

3、进行分式的乘除运算时,应注意以下几点:

(1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、

(2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。

(3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。

(4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。

【八年级数学的教案】相关文章:

数学运算中,e表示什么?(最后能写出高中几年级会学),谢谢了

e是一个类似于π的常数,1.7几估值,高中会学到高一

【精选】减法公式运算法则_七夕硬核表白公式,数学也浪漫?(附七年级上初中数学内容整理)...-CSDN博客

又是一年一度的七夕佳节,这也是我们中国人传统的情人节。看来又是我们吃狗粮,看热闹的时候了!

七夕代表的是追求幸福,向往美好生活,这种美好的愿景不仅存在于牛郎织女中,更存在我们以及数学之间。

谁说我们学数学的不懂表白!抛去那些“普通”的表白方式,单调枯燥的数学也可以浪漫起来!

早在之前,近代科学始祖——勒内·笛卡尔心仪克里斯汀公主,这件事情被国王知道后勃然大怒,将其流放。面对国王的阻拦,笛卡尔在信中写上了一个短短的数学公式:r=a(1-sinθ)。国王看到了这封信,并召集全城的数学家来解密这个公式,没有一个人能解开。克里斯汀公主看到这个公式,把对应的图形画了出来,便出现了一个“心形线”,由此明白了恋人的意图。于是,这个公式代表的图线,也被成为“心形线”。数学公式看上去简单,但是要表达的意思却不简单!

三角函数是考试中经常出现的身影,如果我是sin,你是cos,那么我们只求tan!

根据sin和cos之间的关系,我们可以知道sin、cos的平方和是1,而sin除以cos得到tan,tan的范围是正无穷到负无穷,那么,就可以理解为“两人的感情是无限延伸,不可估量的。”此外,在数学里根据“LOVE”也能够分别做出了诠释,直截了当!

还有一个数学公式最早来源于韩国歌手的一首MV,叫《Ineedyou》。女孩在黑板上写了一个数学公式“128根号e980”,让男主角解答,男主角冥思苦想都算不出来,于是女孩拿起刷子擦掉公式的上半部分,就变成了英文的“ILoveYou”。

通过上面的内容,我们可以知道“公式”的重要性。热闹看够了,我们也该学习学习了!

在数学学习中,公式定理记不住,考试一般凉一半。所以,小编现整理以下内容以供大家参考学习(以人教版为主):

(1)有理数:整数(正整数、0、负整数)和分数(正分数和负分数)统称有理数。

(2)数轴:通常用一条直线上的点表示数,这条直线叫数轴;

注意:数轴三要素:原点、正方向、单位长度;在数轴上表示“0”的点叫做原点。

(3)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

(4)相反数:只有正负性不同(绝对值相等)的两个数叫做互为相反数。

(5)绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

注意:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

(1)求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。

注意:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(3)把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10。

单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式。

●注意:判断代数式是否是单项式,关键要看代数式中数与字母是否有乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,也不是单项式。

多项式的次数是指多项式里次数最高项的次数;多项式的项是指在多项式中,每一个单项式。

●注意:判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。

(1)同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。同类项与系数大小、字母的排列顺序无关。

(2)合并同类项:把多项式中的同类项合并成一项,可以运用交换律,结合律和分配律。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

3.1一元一次方程(1)一元一次方程:方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

注意:判断一个方程是否是一元一次方程要抓住三点:

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

◆等式两边同时加(或减)同一个数(或式子),结果仍相等;

◆等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

由于3.2和3.3都是讲解一元一次方程,我们主要放在一起进行整理。

在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用。因此在解方程时还要注意以下几点:

去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体;去分母与分母化整是两个概念,不能混淆;

去括号:先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;

移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号);

合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;

系数化为1:字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。

①审题,特别注意关键的字和词的意义,弄清相关数量关系;

1、解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题。

2、寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等。解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来。

3、在解含字母系数的方程和含绝对值符号的方程过程中,往往需要分类讨论,尤其在解有关方案设计的实际问题的过程中,往往也要注意分类讨论。

(1)虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

(4)几何体:简称体,包围着体的是面;面面相交形成线;线线相交形成点。

注意:几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体;点无大小,线、面有曲直,因此,点是组成几何图形的基本元素。

●经过两点有一条直线,并且只有一条直线,即:两点确定一条直线。

●两点的所有连线中,线段做短(两点之间,线段最短),线段有两个端点。

(1)角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。

①用三个大写字母及符号“∠”表示,三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间,如∠AOB或∠BOA;

②用一个大写字母表示,这个字母就是顶点,如上图的角可记作∠O,当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示。

(3)角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。

(4)互为余角:两个角的和等于90度(直角),即其中每一个角是另一个角的余角;

互为补角:两个角的和等于180度(平角),即其中每一个角是另一个角的补角。

数学不学好,表白都困难!七夕佳节,特此敬上学习知识,也希望每个家庭父母和孩子都能幸福,感谢大家一直以来对老刘的支持!

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

求高中数学必修一指数对数的计算公式?

对数的运算法则:1、log(a)(M·N)=log(a)M+log(a)N2、log(a)(M÷N)=log(a)M-log(a)N3、log(a)M^n=nlog(a)M4、log(a)b*log(b)a=15、log(a)b=log(c)b÷log(c)a指数的运算法则:1、[a^m]×[a^n]=a^(m+n)【同底数幂相乘,底数不变,指数相加】2、[a^m]÷[a^n]=a^(m-n)【同底数幂相除,底数不变,指数相减】3、[a^m]^n=a^(mn)【幂的乘方,底数不变,指数相乘】4、[ab]^m=(a^m)×(a^m)【积的乘方

一到高中数学指数函数

原式可化为为 lg(x-2y)^2=lg(x*y),所以(x-2y)^2=x*y,即(x-y)(x-4y)=0,所以x=y或x=4y。则x/y=1或x/y=1/4.

相关文章: