年利率计算公式六年级(小学六年级数学利率问题公式)

时间:2023-12-12 08:32:18 | 分类: 基金百科 | 作者:admin| 点击: 59次

小学六年级数学利率问题公式

原标题:小学六年级数学利率问题公式

利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。

(1)单利问题:

(2)复利问题:

例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”

先把月利率变成年利率:

再求本利和:

关注微信公众号:小学数学老师

微信号:shuxue833

责任编辑:

六年级的利率公式是什么

利率=利息除以本金x100%...

史上最全小学一至六年级数学公式汇总

对于许多同学而言,数学是一门最让人头疼的科目,不管老师课上怎么讲解,诸多孩子都不能够理解透彻,也找不到好的方法去记忆,以下是小编整理的最全的数学公式,能够让你方便记忆!

一、小学数学几何形体周长面积体积计算公式

1.长方形的周长=(长+宽)×2C=(a+b)×2

11.三角形的面积=底×高÷2.公式S=a×h÷2

16.内角和:三角形的内角和=180度.

17.长方体的体积=长×宽×高公式:V=abh

18.长方体(或正方体)的体积=底面积×高公式:V=abh

19.正方体的体积=棱长×棱长×棱长公式:V=aaa

20.圆的周长=直径×π公式:L=πd=2πr

21.圆的面积=半径×半径×π公式:S=πr2

22.圆柱的表(侧)面积:圆柱的表(侧)面积23.等于底面的周长乘高.公式:S=ch=πdh=2πrh

24.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2

25.圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh

26.圆锥的体积=1/3底面×积高.公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.

分数的乘法则:用分子的积做分子,用分母的积做分母.

分数的除法则:除以一个数等于乘以这个数的倒数.

1、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

2、1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

3、1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

8、1世纪=100年1年=12月大月(31天)有:135781012月小月(30天)的有:46911月

平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

1.加法交换律:两数相加交换加数的位置,和不变.

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第

3.乘法交换律:两数相乘,交换因数的位置,积不变.

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0.

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.

8.方程式:含有未知数的等式叫方程式.

9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.

学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.

15.分数除以整数(0除外),等于分数乘以这个整数的倒数.

16.真分数:分子比分母小的分数叫做真分数.

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.

18.带分数:把假分数写成整数和真分数的形式,叫做带分数.

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.

1非封闭线路上的植树问题主要可分为以下三种情形:

(1)如果在非封闭线路的两端都要植树,那么:

(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:

(3)如果在非封闭线路的两端都不要植树,那么:

(1)一般公式:

(2)两船相向航行的公式:

甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度

(3)两船同向航行的公式:

后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度

(1)一般公式:

(2)用假设工作总量为“1”的方法解工程问题的公式:

1÷工作时间=单位时间内完成工作总量的几分之几

iPhone浏览器用户:1.点击手机桌面“文件”图标2.在“下载”目录中查找

六年级年利率怎么算?

六年级数学教材的有关计算利息方面的知识,你可以根据利息的公式寻找利率,利息=本金×利率×时间。那么利率=利息÷本金÷时间,只要知道利息,本金,时间这三个数据,利率就可以这样计算出来了。这里计算出来的是小数,还要把它化成百分数,才叫利率。

年利率计算公式

利率又称利息率。表示一定时期内利息量与本金的比率,通常用百分比表示,按年计算则称为年利率。其计算公式是:利息率=利息量/本金

六年级利率怎么?六年级利率怎么算?

答: 利率又称利息率。表示一定时期内利息量与本金的比率,通常用百分比表示,按年计算则称为年利率。其计算公式是:利息率= 利息量 ÷ 本金÷时间×100%。

小学犯斯行江清提宁秋六年级年计算利率公式

答:利率又称利息率。表示一定时期内利息量与本金的比率,通常用百分比表示,按年计算则称为年利率。其计算公式是:利息率=利息量÷本金÷时间×100%。

谁来自能把6年级下学期数学360问答的全部计算公式写出来!

1每份数×份数=总数总数÷每份数=份数总数÷份数=每份数21倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3速度×时间=路程路程÷速度=时间路程÷时间=速度4单价×数量=总价总价÷单价=数量总价÷数量=单价5工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6加数+加数=和和-一个加数=另一个加数7被减数-减数=差被减数-差=减数差+减数=被减数8因数×因数=积积÷一个因数=另一个因数9被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6平行四边形s面积a底h高面积=底×高s=ah7梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1=利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)长*宽*高底面积*高底面积*高/3边长的立方

小学数学六年级下册第二单元教学教案5(整理14篇)

下面是小编整理的小学数学六年级下册第二单元教学教案5(共含14篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“PPan”一样,积极向本站投稿分享好文章。

人教版小学数学六年级(下册)第二单元教学教案(5)

人教版小学数学六年级(下册)第二单元教学教案(1)

人教版小学数学六年级(下册)第二单元教学教案(3)

人教版小学数学六年级(下册)第二单元教学教案(2)

总课时数:授课时间:

一、复习

引导学生看图,提问:谁能说一说这幅图的意思?(有15个气球,买了9个,还有几个?)

想一想,用什么方法计算?该怎样列式?学生思考回答后,教师板书:15―9=

提问:如果没有图,要算15减9等于几,该怎样想?

(学生以四人为一小组,互相商量。教师可提示学生联系旧知识进行计算。)

学生汇报讨论结果,可能有以下几种情况:

教师对学生的不同想法,应及时给予表扬,鼓励学生多动脑筋多思考。进一步提问:这么多的想法都是对的,那么你觉得哪一种方法又快又好呢?(鼓励学生用想加算减的方法:想9加几得15,15减9得6)同时板书得数“6”。

2.小朋友玩套圈游戏,投了14个圈,有9个没套中,套中了几个?

提问:

(1)要求套中了几个,该怎样列式?(学生回答后,教师板书:14―9=)

3.小结:今天我们学习的是什么内容?(十几减9)教师板书课题。

该怎样计算这些题目呢?教师指题,引导学生总结出想加算减的方法,同时也鼓励学生可选择自己喜爱的方法进行计算。

让学生在桌子上用小棒摆一摆,边操作边小声地说想的过程。然后指名说,再在方框里填上数。

学生先独立完成,再任指几题,让学生说一说最喜欢用什么方法计算。

l.完成教科书P11练习二第1、2题。

板书设计:

作业设计:

课后记:

总课时数:授课时间:

通过十几减9的练习,进一步理解和掌握20以内退位减9的口算方法,提高计算能力。

一、复习

(2)让学生独立口算出每一个算式的答案,并将他们对号入座。

(3)教师任意选择一题让学生说一说你是怎样想的。

教师将l0、14、13、17……写在黑板上,然后教师一手拿着9的卡片在黑板上移动(不必按顺序),卡片对着十几就算十几减9。

教师还可以随意在黑板上指题,全班每一个学生举数字卡片表示得数,这样能激发学生做题的兴趣,有利于提高学习的效果。

(2)提问:这道题告诉我们什么条件,要我们求什么?

教学内容:

教学目标:

1进一步掌握一位数除两位数商两位数的计算方法和竖式的写法,提高计算的速度和准确率。

2培养学生灵活运用知识分析和解决问题的能力。

3养成认真审题的良好习惯,培养学生爱好数学的情感。

教学过程:

一、复习:

1、怎样笔算一位数除两位数的除法?

二、指导练习:

1、第21页练习四第1题

(3)画出要摆的形状,再说说解答这类问题要用什么方法。

三、全课总结:

完成练习时看清题目认真审题,注意计算要准确。

本金:存入银行的钱叫做本金。

利息:取款时银行多付的钱叫做利息。

利率:;利息与本金的百分比叫做利率

理解本金、利息、利率之间的数量关系,利率和存期一一对应

利息=本金×利率×存期,求整年度的利率,只要根据利率表,把整年度的利率和存期一一对应起来,相乘、再乘本金即可求出整年度的利息。但是求半年的利息,学生往往容易出现本金×半年的利息×6。看见根据公式的有问题,学生的利率和存期的关系一一对应起来。

学生对什么是利息,概念抽象、理解困难,六年级学生的心理上一看套公式解决问题,心理的松了,机械的带公式解决问题。学生没有理解半年的年利率的含义,年利率的和存期没有一一对应起来,导致错误。

1.通过错例对比分析,发现利率和存期是一一对应关系,

2.通过一题多解的方式,学生理解利率和存期一一对应关系

一、导入

1.谈话,将多余的钱存入银行即可增加收入,又支援了国家建设。

3.出示利率表,根据利率表解决第一个问题,王奶奶到银行存钱,到期后可以取多少钱?思考问题的同时介绍本金、存期、利息的概念,出示求利息的计算公式,解决王奶奶本金5000元,存期1年后可取回多少钱的问题。

4.改变存期,本金不变,存期由一年变成两年,两年后王奶奶可取回多少钱?主要考察学生能否把存款的利率和存期一一对应起来,

存款是整年:只要用本金×年利率×存期就能求出相应的利息了。

改变存期由两年调整到半年,半年后的利率是多少呢?

出示计算方法,5000×1.55%×6=465(元)

发现半年的利息怎么比一年的利息还高呢?问题出在哪里?

(1)1.55%是半年的利率,6是6个月,6个月是多少年呢?1/2或0.5年,现在计算是多少?

(2)介绍另一种计算方法,突出利率和存期可对应关系,

5000×1.55%÷12×6=38.75(元)

(4)通过两种计算利率的方法,理解利率和存期的对应关系。

存期用多少年表示,就要用年利率;存期用多少月表示,就要用月利率。

王奶奶本金不变,存期三个月,到期可得多少利息?(独立完成)

5000×1.35%×?=16.88(元)

5000×1.35%÷12×3=≈16.88(元)

8.扩展思考:存款、贷款、理财产品都涉及到利率的问题

1.理解本金、利息和利率的含义,掌握利息的计算方法,会正确的计算存款利息。

2.使学生初步认识储蓄的含义,感受到储蓄给人们生活带来的方便及益处。

3.使学生感受数学在生活中的作用,培养学生初步的理财意识和实践能力。

1.利息和本息和的计算。

大家的压岁钱是怎么管理的?为什么把钱存入银行?

把钱存入银行,会获取一部分利息,怎么计算利息呢?这就是我们今天要学习的内容。

课件出示:小红20xx年9月1日把100元钱存入银行,整存整取一年,到20xx年9月1日,小红不仅可以取回存入的100元,还可以得到银行多付给的3元,共103元。

巩固实践爸爸妈妈给贝贝存了2万元教育存款,存期为三年,年利率为5.40%,到期一次支取,支取时凭非义务教育的学生身份证明,可以免征储蓄存款利息所得税。

本金:存入银行的钱叫做本金。

利息:取款时银行多付的钱叫做利息。

利率:利息与本金的百分比叫做利率。

方法一:方法二:

了解合理购物的意义,能自己做出购物方案,并对方案合理性做出充分的解释。

让学生综合运用折扣知识解决生活中的“促销”问题,使学生对不同的促销方式有更深入地认识,经历综合应用知识的过程,具有一定的难度。

解题过程中对学生掌握百分数应用题的数量关系,解决问题的熟练度有较高的要求。“商场促销”虽对学生来说都不陌生,但学生购买促销商品的经验还不足,对各促销方式的实质理解具有一定的难度。

1、通过复习整理、引导分析、巩固练习,运用百分数的相关知识解决生活中的“促销”问题。

2、通过自主学习、小组讨论、反思总结体会各促销方式的实质。

一、导入

1.妈妈想买一件原价700元的裙子,五折之后这条裙子多少钱?(重点理解答五折的意思)

答:五折之后这条裙子350元

(1)课件出示例5:某品牌的裙子搞促销活动。在A商场打五折销售,在B商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。

小明提出了这样两个:

我们一起来解决这些问题。题目给出的数学信息中,哪些是关键呢?

A商场打五折销售,在B商场按“满100元减50元”的方式销售。

打五折它表示现价是原价的50%,那么每满100元减50元是什么意思?快来思考一下吧!

就是在总价中取整百元的部分,每个100元减去50元,不满100元的零头部分不优惠。

(2)在A商场买,直接用总价乘50%就能算出实际花费。列式:230×50%=115(元)

在B商场买,先看总价中有几个100,230里有2个100,然后从总价中减去2个50元。

列式:230-50×2=130(元)230-50×2=130(元)

答:在A商场买应付115元,在B商场买应付130元;打五折的方式更省钱。

①满100元减50元,少了50元,也是打五折,怎么优惠的结果不一样呢?

原来打五折就是无论标价是多少,实际售价都是原价的50%。“而满100元减50元”就只能是原价中满了100元的部分能优惠50元,能打五折,而不满100元的部分就没有折扣了。

如果商品的售价刚好是整百元的时候,两种优惠结果是一样的。

看起来每满100元减50元不如打五折优惠。如果总价能凑成整百多一点就相差不多了。

4.巩固练习:某品牌的旅游鞋搞促销活动,在A商场按“每满100元减40元”的方式销售,在B

商场打六折销售。妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

A商场:120-40=80(元)

B商场:120×60%=72(元)

答在A商场买应付80元,在B商场买应付72元,选择B商场更省钱。

1.在购物时,可以运用学过的百分数知识对商家的优惠方式进行分析对比,从而选出实惠、省钱的方案。

2.商家的促销方式:“打几折”,“每满100元返50元礼券”,“每满100元减50元”,“买五件送一件”都转化为百分数的知识来理解。

1.理解储蓄的含义,明确本金、利息和利率的含义。能正确地进行利息的计算。

2.经历储蓄的认识过程,体验数学知识之间的联系和广泛应用。

3.激发学生学习兴趣,培养学生的应用意识和实践能力。

一、情境导入

快要到年底了,许多同学的爸爸妈妈单位里会在年底的时候给员工发放奖金。你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?爸爸妈妈会不会把一大笔现金放在家里?为什么?

师生共同小结:人们常常把暂时不用的钱存入银行,储蓄起来。这样不仅可以支援国家建设,使得个人钱财更加安全和有计划,还可以增加一些收入,即到期可以取出比存入的要多些的钱。

那么同学们知道为什么有时我们把钱存在银行,最后去取的时候钱会变多呢?

同学们知道吗,在不同的银行,有时我们可以得到不同的利息,因为它们的利率不同。那么,什么是利率呢?今天我们就一起来学习一下。

教师板书课题:利率。

(1)学生围绕上面提出的问题,以小组为单位,阅读教科书第11页,不理解的内容可在小组讨论或做上记号。

师:通过看书学习和讨论,你知道了储蓄中的哪些知识?能向全班同学汇报一下吗?

教师根据学生的回答板书:

定期:零存整取、整存整取

本金:存入银行的钱叫本金。

利息:取款时银行多支付的钱叫利息。

利率:利息和本金的比值叫做利率。

教师说明:利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。同一时期,各银行的利率是一定的。

(2)引导学生理解题意,本题中本金、利率、存期分别是多少?

方法一:5000×3.75%×2=375(元)

方法二:5000×(1+3.75%×2)=5375(元)

(5)教师讲解:存期是几年,就要选取相对应的年利率。本金与年利率相乘,得出的是一年的利息,求两年的利息就要乘2。

先提问本题中本金、利率、存期分别是多少?后学生独立完成,集体订正。

教师引导学生观察存款凭证后提问:存期是多长?半年用多少年计算?

储蓄与人们的生活联系密切。本节课中概念较多,教学中结合具体实例,帮助学生理解本金、利息、利率的含义以及三者之间的关系,在引导学生探究学习的过程中,有意识地引导学生把所学知识运用到生活实践中去。学生在解决有关“利率”的问题时,可能会出现以下几个错误:计算利息时忘记乘存期;没有注意利率和存期的对应性;计算利息时,存款的利率是年利率,计算时所乘时间的单位应是年等。要将学生的错误转化成学习资源,在纠错中进一步理解和掌握知识。

1.经历小组合作调查,交流储蓄知识,解决和利率有关的实际问题的过程。

2.知道本金、利率、利息的含义,能正确解答有关利息的实际问题。

3.体会储蓄对国家和个人的重要意义,积累关于储蓄的常识和经验。

重点:理解利率与分数、百分数的含义。

难点:解决有关“利率”的实际问题。

一、创设情境,激趣引导

师:同学们,快要到年底了,许多同学的爸爸妈妈的单位里会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?爸爸妈妈会不会把一大笔现金放在家里?为什么?

生1:一般情况下,爸爸妈妈应该把钱存入银行。

生2:爸爸妈妈不会把一大笔现金放在家里,这样太不安全了,他们会存入银行。

生3:把钱存入银行不仅安全,还可以获得利息呢。

师:人们常常把暂时不用的钱存入银行或信用社储蓄起来。这样不仅可以支援国家建设,也使个人用钱更加安全和有计划,还可以增加一些收入。钱存入银行后增加的部分就是利息,今天我们就重点研究与“利息”相关的问题。

【设计意图:借助主题图吸引学生注意力,引导学生仔细观察获取有价值的数学信息,为下面提出问题,解决问题做好准备】

师:先来大胆地猜一猜,你觉得利息的多少与什么因素有关呢?

生1:不可能说钱存入银行的时间长短不同,而所得的利息一样,所以利息的多少应该与钱存入银行的时间有关。

师:对,利息的多少与存入的时间长短有关,存入的这段时间也就是我们平时所说的存期。

生2:不可能说存入银行的钱不管多少所得的利息都一样,所以利息的多少应该与存入银行的钱的多少有关,存入的钱越多,相同时间内的利息应该越多。

师:说的很有道理,我们把存入银行的钱叫做本金。存期相同的情况下,本金越多,利息就越多。

生3:在学习计算应纳税额时,我们知道应纳税额的多少与税率的高低有关,我想是不是利息的多少也应该与利率有关呢?

生4:我们小组的同学进行过调查,在银行内很显眼的位置公布着不同存期的利率,利息的多少一定与利率有关。

师:说得很好。我们把单位时间(如1年、1月、1日等)内的利息与本金的比率叫做利率。存期不同,利率一般也是不同的。那么,谁愿意把课前调查知道的有关储蓄的其他知识与大家做一下交流呢?

学生可能会说:

o我知道了储蓄的种类有整存整取、零存整取和活期。

o我知道了整存整取的利率又分为三个月的、半年的、一年的、二年的、三年的、五年的,存期不同利率也不一样。

o我知道了活期的利率最低,但是随时用钱随时取,比较方便。

师:你们知道利息究竟怎么计算吗?

生:利息的计算公式是利息=本金×利率×时间。

师:根据国家经济的发展变化,银行存款的利率有时会有所调整。下面是20xx年7月中国人民银行公布的存款利率。(课件出示:教材第11页利率表)

师:能运用你所掌握的利率的相关知识帮王奶奶解决问题吗?试一试。(课件出示:教材第11页例4)

学生尝试独立解答问题;教师巡视了解情况,指导个别有困难的学生。

师:谁愿意说说你的想法和算法?

生1:首先我们要明确的是,到期后王奶奶可以取回的钱除了本金还有利息,本金我们已经知道是5000元,所以最关键的就是算出利息。根据利息的计算公式“利息=本金×利率×时间”,我们从上面的利率表中对应找到存期两年的利率是3.75%,这样就可以算出利息5000×3.75%×2=375(元);再加本金,到期后可以取回的钱就是5000+375=5375(元)。

生2:我们也可以把本金5000元看作单位“1”,这样每年的利息就是5000元的3.75%,存入2年,所得利息就是5000元的(3.75%×2);这样到期时可以取回的钱就可以列成算式5000×(1+3.75%×2)=5375(元)。

只要学生解答正确,讲解合理就要及时给予肯定和鼓励。

【设计意图:在学生课前调查的基础上,引导学生进行交流汇报,在学生的交流讨论中完成新知识的探究学习,激发学生的学习兴趣】

师:同学们谈谈学习本课有什么新的收获。请同学们回家与父母商量,把自己过年的压岁钱存入银行,按活期储蓄存到学期末,看看你从银行取款时,本金和利息共多少元?

【设计意图:实践延伸,给学生提出具有挑战性的要求,让学生获得实践体验,感受到所学知识能运用于生活的乐趣】

1.本节课我始终“以学生为本”,强调让学生通过自己的活动归纳出利息的计算方法,增加了学生对知识的理解和深化。以往计算利息时,学生经常把时间漏乘,这是学生容易忽视的地方。通过简短的争论,练习时学生很少把时间漏乘,从简短的争论中,引导学生发现方法,要比教师反复强调效果好得多。

2.储蓄与人们的生活联系密切,本节课是在百分数的知识和学生已有生活经验的基础上进行教学的。注重数学知识与生活实践的联系。我们知道学习数学的目的是为了应用,教师在设计练习时,要有意识地引导学生把所学知识运用到生活实践中去,体现数学服务于生活的教育理念。

郑老师买了3000元的国债,定期五年,年利率是3.81%。到期他一共可以取出多少元钱?

(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的具体问题)

为了给亮亮准备2年后上大学的学费,他的父母计划把10000元钱存入银行,你认为哪种储蓄方式更好呢?为什么?

(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的实际问题)

A类:

3000×3.81%×5+3000=3571.5(元)

B类:

存一年再存一年:10000×4.14%×1=414(元)

直接存入两年:10000×4.77%×2=954(元)

完成练习时看清题目认真审题,注意计算要准确。

本金:存入银行的钱叫做本金。

利息:取款时银行多付的.钱叫做利息。

利率:;利息与本金的百分比叫做利率

教学内容教学内容:利率(课本第11页例4)

1、学生在调查实践中了解储蓄的意义、种类,理解什么是本金、利息。

教学重点:利息的计算

教学难点:利息的计算。

教学方法联系生活,引导学习,总结提升;自主学习,小组讨论

一,导入新课:

同学们,你们去过银行吗?你知道去银行人民常做什么吗?你知道我们周围有什么银行?你见过银行卡吗?

1、储蓄的意义

师:快要到年底了,许多同学的爸爸妈妈的单位里

会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?

1、自学课本中的例子,理解”本金“、”利息“、”利率“的含义,然后四人小组互相举例,检查对”本金“、”利息“、”利率“的理解。

本金:存入银行的钱叫做本金。

利息:取款时银行多付的钱叫做利息。

利率:;利息与本金的百分比叫做利率。

2、师:根据国家经济的发展变化,银行存款的利率先让学生谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。

(2)例4:王奶奶要存5000元请你帮助王奶奶算一算存两年后可以取回多少钱?(整存整取两年的利率是3。75%)。

在弄清以上这些相关概念之后,学生尝试解答例题。

年利率计算

答案如下:年利率1.578%是360天的利率.2000(万)*1.578%/360*7=6137(元)年利率1.60%这是365天的利率。2000(万)*1.60%/365*7=6137(元)主要看你和银行的合同是怎么订的。

相关文章: